It’s Nobel time again!

More exciting to me and certainly more impactful to humanity than the NCAA, Nobel season is a great time to reflect on major advances in science. I’m going to walk through my top contenders for the Chemistry and Physics Prizes. While I’m interested in all the Nobel prize winners and their work – whether it is in one of the sciences or in literature – the Physics and Chemistry Prizes hold a special appeal to me as a scientist working somewhere between those two fields.

The chemists in the blogosphere generally have a better game on about the odds on the potential future laureates than the physicists. I am particularly intrigued by Chembark and The Curious Wavefunction‘s  predictions. Given a recent shift away from the bio-related topics, this might be a year to bet that way. I thus find myself in agreement with Chembark’s 6-1 odds on Pierre Chambon for nuclear hormone signalling. Moerner’s work on single molecule spectroscopy is also another favorite of mine, for which he won the Wolf Prize in 2008 and the Langmuir Prize in 2009. In Physics, a Wolf Prize is a very strong indicator of soon-to-come Nobel. I’m not sure if this is true for Chemistry or not.

The dark horse in this race, in my opinion, is Allen Bard, the noted electrochemist, for the discovery of electron transfer in biological systems. This would tickle the bio-partisans and recognize the crowning contribution by someone for whom a lifetime achievement award would not be unreasonable. Chembark is quoting 19-1 odds on Bard. I think the chances are higher.

Usually, no one from the physics community handicaps the Physics Nobel race like the chemists do theirs. Poor showing, my fellow physicists!  This year, however, there is a heavyweight contender for the prize. With the exciting results from the Large Hadron Collider, I think that the Nobel Committee will have a hard time ignoring nominations for Peter Higgs (of the eponymous boson) and Francois Englert. The Atlantic has made a case for one of the trio of Hagen, Guralnik, and Kibble, who also published extensively (and a case can be made for independently) on what we now refer to as the Higgs boson. All 5 of these men (and one other, deceased) shared the Sakurai prize for work on the Higgs, so their contribution has been recognized. I will predict that if the Academy presents a medal based on this work, it will be to Higgs and Englert alone. The only thing I see that can be argued against a Higgs win here is the relative recency of the results. The committee, which includes two particle physicists, (Brink and Bergström) might reasonably choose to wait a year to ensure a more thorough analysis of the LHC data.

If they choose to delay on an award for Peter Higgs, the field is fairly wide open. There are several strong contenders in this case. The leading contenders, in my opinion, are Anton Zeilinger, John Clauser, and Alain Aspect for discoveries around quantum entanglement. With Zeilinger’s recent paper in arXiv.org building on his 2007 work on quantum teleportation, its clear that a path exists towards development of a practical quantum communications system. Zeilinger won the Wolf Prize in 2010 for this work.

Last year’s Wolf Prize winners in Physics are also strong contenders. Maximilian Haider, Harald Rose, and Knut Urban received the Wolf Prize in 2011 for their work on aberration-corrected transmission electron microscopy. Bekenstein’s Wolf Prize winning work on the thermodynamics of black holes is certainly worthy of a prize, but I have a hard time seeing that this year.

In any case, October of 2012 is fast approaching. I can’t wait to find out who will get the call from Stockholm.

This is your brain on management

Here’s a great piece from the Neuroskeptic blog. They’re covering this new paper from PLoS ONE about fMRI imaging of manager’s brains.

The upshot of the paper is that managers tend to use less of their brain to make decisions, relying on established heuristics rather than fully engaging their cerebral cortex. This leads to fast, efficient decision making.

The implication I take away from this is that you get managerial failure in highly unusual (Black Swan, perhaps) situations that cannot be handled with existing heuristics and that managers are probably not inclined on the first blush to think outside the box.

Being in a managerial position myself, but one where I still am actively involved in the lab and in product development, I find that I appreciate the time I have where I’m not being expected to make rapid, effective decisions. It could be the case that letting your managers exercise these other areas of their cerebral cortex will produce better managers, ones who are able to make the rapid decisions that this paper indicates they can make, but who still have the facility to think more fully about the decision.

Nature Magazine’s job satisfaction survey

Nature has just published the results of their 2012 Salary and Satisfaction survey. It’s interesting reading, especially in light of the global economy. The primary takeaway is that in countries that have seen the most disruption, scientists are generally more worried about the stability of their funding sources and their jobs. This is unsurprising and mirrors the economic uncertainty felt in other professions. What is more surprising is that in some countries that have had relatively less economic disruption, such as China, India, and Japan, job satisfaction is lower than in countries like Spain, Italy, and the UK. A sidebar in the article speculates based on survey responses that factors such as the lack of good mentors or the lack of academic freedom contribute as much to job satisfaction for scientists as the economy.

Readers of Daniel Pink’s Drive will immediately be thinking about his trinity of motivation: autonomy, mastery, and purpose. Certainly, this particular result of the survey seems to be indicative that failure to provide these things leads to dissatisfied workers. The countries with the lowest satisfaction correlated with the countries that scored lowest on ‘degree of independence.’

 

Nature cannot be fooled

This quote from Richard Feynman in the appendix of the final report on the Challenger disaster should be remembered by all scientists, whether in industry or academia.

Derek Lowe at the Pipeline Blog writes most eloquently on the subject: “Not even with our latest management techniques can nature be fooled, no matter how much six-sigma, 4S, and what-have-you gets deployed. Nothing else works, either. Nature does not care where you went to school, what it says on your business cards, how glossy your presentation is, or how expensive your shirt.”

Mass balance analysis of algal biodiesel

Physorg.com reports on a recent paper in which the authors analyze the sustainability of algal biodiesel from a mass balance perspective. The paper, Bioresource Tech. 102, 1185, essentially highlights one of the tradeoffs with algal biodiesel. The low tech route of large containment ponds limits the total output of dry biomass per hectare, as evidenced by the author’s computation that even 11 square miles of algae ponds, at a growth rate of 50 g of bone-dry biomass per square meter per day, would only be sufficient to replace 0.1% of the US consumption of diesel.

Of course, there are many ways to increase the output per hectare. One of these are vertical tubes, or bioreactors, for algae growth. The issue with this approach is that it is capital intensive, requiring not only the tubes, but cooling systems to prevent algae death from overheating and requires higher overhead, since the tubes must be scrubbed occasionally to reduce fouling.

If I were to be looking at this area for technology breakthroughs, I’d be looking at people applying anti-fouling or other surface chemistry applications to reduce the maintenance costs, or clever engineers designing passive cooling systems for these reactors. I can imagine a system where the bioreactors were built to exchange heat with an HVAC system in cooler environments, or with their own ground-sourced heat pump in warmer times. The cost of the cooling is a major barrier and it would be a win to spread that cost around amongst several different systems.

A strong argument for open access journals

Recently, the pharmaceutical giant, Merck, was caught having paid scientific publishing giant, Elsevier, to create a completely bogus “peer-reviewed” journal to help promote positive data about Merck’s products. The details are covered in this article from Bioethics.net.

In my mind, this is a clear argument for open access scientific journals. While it would be possible to corrupt the process of peer review in an open access journal, it would be pretty difficult to hide the fact for very long.

Having a love affair with a new technology

Everyone, every business, has love affairs with technology. You may have too. Remember that feeling? The fluttering in your stomach, feeling alternately hot and cold, daydreaming about the places you’ll go, the things you’ll do. No, it wasn’t your first date, but rather, the last technology you looked at and fell in love with. And, odds are likely, just like that first date, your breakup with that technology was harsh and bitter.

I’m going to talk about how that love affair manifests, how you manage it, and how you move past it into a wonderful relationship that will hopefully last many years, bring in revenue, and perhaps even change the world.

Continue reading

Science and medicine

Some time ago, at the suggestion of my good friend, Daniel Hornbaker, I read an interesting but poorly-argued book by Steve Salerno that detailed the fraudulence and predatory practices of the 8G$ self-help industry. Recently, Salerno published an article in the Wall Street Journal that discussed some of the fraudulent activities in the complementary and alternative medicine (CAM) field. The disturbing part of the article for me was that despite continual failures to show any efficacy of CAM treatments, the NCCAM, a federally-funded part of the National Institutes of Health, is still being funded.

While I’m very interested in scientific investigations of the traditional pharmacopia, such as what the Bent Creek Institute is doing here in town – i.e. lots of extractions and chromatography – I’m concerned that mainstream emphasis on unscientific treatments will lead to a lot more deaths like this one.

Investment in R&D for sustainable technology

I just finished Common Wealth, by Jeffrey Sachs. The book is a fairly dry layout of why we aren’t meeting the UN’s Millennium Development Goals and what the consequences of that failure may be. I can’t recommend the book to the casual reader, because of its incredible denseness, but it does contain a fair amount of useful data for those of us who are thinking in the Bright Green mode.

One tidbit that I found interesting was Sachs’ estimation of the required investment in research and development in sustainable technology in order to address the issues in climate change, water and food security, disease, et al. that the book covered. This required investment was set at 0.2% of GNP of the developed world. By his calculations, which were likely made in 2007, this amount is equal to 70 billion dollars. While his estimation methodology was unfortunately not clearly disclosed, lets run with it for the time being.

By comparison, the 2007 NSF budget was 5.9 G$ (source: NSF.gov), the NIH budget was 29 G$ (source: NIH.gov, and the Department of Defense research budget was 72 G$ (source: Defenselink). Exclusive of other smaller research programs, such as the Department of Energy research programs and NASA, this represents around 107 G$ in funded research. By comparison, the 2007 cost of the Iraq War (specifically excluding Afghanistan and other “War on Terror” expenditures) was 123 G$ (source: CBO)

The implication of these numbers is that it appears to be quite feasible to fund the required research and development in sustainable technology, perhaps even unilaterally. Further, investing that 70 G$ above and beyond current research funding would at least partially address the “green jobs” development that President-elect Obama has been advocating. While some portion of this money would go to academic grants, some non-trivial portion of the funding should be made available in a SBIR/STTR program. Additionally, some technology-driven small business development funds, something like an angel investment fund for sustainable technology, would encourage green job growth while meeting these sustainable technology R&D goals.

It also seems reasonable that such an initiative would incentivize growth in the science and engineering fields. Despite a lot of ado about the need to train more scientists and engineers, many technical fields are and have been producing a glut of students with advanced degrees (as Daniel Greenberg and various industry publications, such as Physics Today and C&E News, have pointed out.) It also goes without saying that once a technical professional transitions from science and engineering to business or law, they do not return – the disparity in pay scales is generally insurmountable, at least in my experience. Driving the demand for technical professionals with these R&D incentives could absorb at least part of this glut, preventing the loss of the most talented individuals from the technical fields.

Above all, the goal of this funding is worthwhile: many of the challenges facing the world have solutions that are either in whole or in part technological. While I am always skeptical of throwing money at problems, I find a world of difference between things like funding direct food aid to developing countries and funding research in drylands agriculture and permaculture in order to improve cropland yields while reversing soil degradation. The former is simply spreading the wealth while the latter so very clearly creating new wealth for the entire world. When these Millennium goals are met, political scientists and economists argue that conflicts over scarce resources in the developing world will dwindle. It seems reasonable , then, that the best investment in foreign aid and development should start here. Hopefully, President-elect Obama’s advisors will encourage him to champion this opportunity to make such an investment in sustainable technology.

Genius Grants

I make it a point to read up on each year’s MacArthur Fellows. These MacArthur “Genius Grants” are unlike Nobel Prizes in that they are more often awarded on the strength of what the recipient will accomplish in the future than on the strength of what the recipient did years ago. More importantly, I’ve found at least one Fellow every year whose work has been so inspiring to me that I’ve continued to follow it over the years. The first of these was Dr. Angela Belcher, a professor of Materials Science at MIT. I’ve also been pleased when I see folks whose work I’ve admired recieve the award, such as Saul Griffith, the founder of Squid Labs and David Macauley, the incredible illustrator of “The Way Things Work.”

This year, one of the most inspiring recipients of the MacArthur Fellowship is an agriculturalist named Will Allen. His non-profit, Growing Power, maintains an urban farm in Milwaukee, providing fresh vegetables to the residents of the distressed inner city there. Regular readers here will note that I have a strong interest in urban agriculture and small-lot permaculture, so it is especially rewarding to see the MacArthur Foundation take interest in the kind of project that Will Allen is leading.

The New York Times published a great article about a month back on Will Allen and Growing Power and MAKE magazine has the video of an interview with him.